Math, asked by ashoo10, 10 months ago

sin 75 degree and Cos 75 degree​

Answers

Answered by mysticd
4

Answer:

sin75\degree=\frac{\sqrt{3}+1}{2\sqrt{2}}

cos75\degree=\frac{\sqrt{3}-1}{2\sqrt{2}}

Step-by-step explanation:

sin75\degree\\=sin(45+30)\\=sin45cos30+sin30cos45\\=\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{2}\times \frac{1}{\sqrt{2}}\\=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\\=\frac{\sqrt{3}+1}{2\sqrt{2}}

cos75\degree\\=cos(45+30)\\=cos45cos30-sin30cos45\\=\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}-\frac{1}{2}\times \frac{1}{\sqrt{2}}\\=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\\=\frac{\sqrt{3}-1}{2\sqrt{2}}

•••♪

Similar questions