Math, asked by tashimodi28, 4 months ago

sin 75 - sin 15 / cos 15 - cos 75 = 1​

Answers

Answered by aditiagarwala
0

LHS

= COS(90- 75) - COS( 90- 15)° / COS 15° - COS 75°

= COS 15° - COS 75 ° / COS 15° - COS 75°

= 1

HENCE PROVED

Answered by Anonymous
0

sin ( 45 + 30 ) - tan 15 - cos ( 45 + 30 )

=> sin45.cos30 + cos45.sin30 - tan( 45 - 30 ) - (cos45 cos30 - sin45 sin30)

 =  >  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  -  \frac{1 -  \frac{1}{ \sqrt{3} } }{1 +1 \times  \frac{1}{ \sqrt{3} } }  -  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}   +   \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\  \\  =  >  \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} }  -  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}   -  \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} }  \\  \\  =  >  \frac{1}{ \sqrt{2} }  -  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \\  \\  =  >  \frac{1}{ \sqrt{2} }  -  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}  \times   \frac{ \sqrt{3}    - 1}{ \sqrt{3}  -  1 }  \\  \\  =  >  \frac{1}{ \sqrt{2} }  -  \frac{3 - 2 \sqrt{3}  + 1}{3 - 1}  \\  \\  =  >  \frac{1}{ \sqrt{2} }  -  \frac{4 - 2 \sqrt{3} }{2}  \\  \\  =  >  \frac{1}{ \sqrt{2} }  - 2 +  \sqrt{3}

______________________________

I hope it would be helpful 4 u ☺

Fóllòw Më ❤

Similar questions