Math, asked by leena983, 11 months ago

sin 75° + cos²15° = ?​

Answers

Answered by garima6863
0

using identity sin(90-theta)=cos theta

and use sin theta+cos theta =1...

Answered by sanketj
0

we know that

cos2x = 2 {cos}^{2} x - 1 \\  {cos}^{2} x =  \frac{cos2x + 1}{2}

and

sin(x + y) = sinxcosy + cosxsiny

now,

sin {75}^{o}  +  {cos}^{2}  {15}^{o} \\  =  sin( {30}^{o}  +  {45}^{o} ) +  \frac{cos {(2 \times 15)}^{o}  + 1}{2}  \\  = sin {30}^{o} cos {45}^{o}  + cos {30}^{o} sin {45}^{o}  \\ \:  \:  \:  \:   +  \frac{cos {30}^{o} + 1 }{2}  \\  = ( \frac{1}{2})( \frac{1}{ \sqrt{2} }  ) + ( \frac{ \sqrt{3} }{2} )( \frac{1}{ \sqrt{2} } ) +  \frac{ \frac{ \sqrt{3} }{2}  + 1}{2}  \\  =  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} }  +  \frac{ \frac{ \sqrt{3}  + 2}{2} }{2}  \\  =  \frac{( \sqrt{3}  + 1) \sqrt{2} }{2 \sqrt{2}  \sqrt{2}  } +  \frac{ \sqrt{3} + 2 }{4}   \\  =  \frac{( \sqrt{3} + 1) \sqrt{2}  + ( \sqrt{3}   + 1) + 1}{4}  \\  =  \frac{( \sqrt{3} + 1)( \sqrt{2} + 1) + 1  }{4}

Similar questions