sin 7x - sin 5x /cos 7x + cos 5x= tan x
Answers
Answered by
0
Answer:
If you don’t know the formulas used by Azmat Ali in his answer but do know the ‘sum of angle formulas’, you can reason as follows:
cos7x = cos(6x+x) = cos6xcosx - sin6xsinx
cos5x = cos(6x-x) = cos6xcosx + sin6xsinx
hence cos5x + cos7x = 2cos6xcosx (1)
sin7x = sin(6x+x) = sin6xcosx + cos6xsinx
sin5x = sin(6x-x) = sin6xcosx - cos6xsinx
hence sin5x + sin7x = 2cos6xsinx (2)
Now divide (1) by (2).
Step-by-step explanation:
Formulas:
cos x + cos y = 2 cos ((x + y) / 2) cos ((x - y) / 2)
sin x - sin y = 2 sin((x - y) / 2) cos ((x + y) / 2)
So cos 7x + cos 5x = 2 cos 6x cos x and sin 7x - sin 5x = 2 sin x cos 6x
(cos 7x + cos 5x) / (sin 7x - sin 5x) = 2 cos 6x cos x / 2 sin x cos 6x = cos x / sin x = cot x
Similar questions