Math, asked by pottiswetha06, 10 months ago

Sin 8/ 1+ cos 8 = 1-
cos 8 /1+ cos 8

Answers

Answered by shellyanilshelly
0

Answer:

Answer:

\left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) = \frac { 1 } { 8 }(1+cos

8

π

)(1+cos

8

)(1+cos

8

)(1+cos

8

)=

8

1

Solution:

Given that

\begin{lgathered}\begin{array} { l } { \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) } \\\\ { = \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \sin \left( \frac { \pi } { 2 } - \frac { 3 \pi } { 8 } \right) \right) \left( 1 + \sin \left( \frac { \pi } { 2 } - \frac { 5 \pi } { 8 } \right) \right) \left( 1 + \cos \left( \pi - \frac { 7 \pi } { 8 } \right) \right) } \end{array}\end{lgathered}

(1+cos

8

π

)(1+cos

8

)(1+cos

8

)(1+cos

8

)

=(1+cos

8

π

)(1+sin(

2

π

8

))(1+sin(

2

π

8

))(1+cos(π−

8

))

\because \cos \left( \frac { \pi } { 2 } - X \right) = \sin X∵cos(

2

π

−X)=sinX

\begin{lgathered}\begin{array} { l } { = \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \sin \left( \frac { \pi } { 8 } \right) \right) \left( 1 - \sin \left( \frac { \pi } { 8 } \right) \right) \left( 1 - \cos \left( \frac { \pi } { 8 } \right) \right) } \\\\ { = \left( 1 - \cos ^ { 2 } \frac { \pi } { 8 } \right) \left( 1 - \sin ^ { 2 } \left( \frac { \pi } { 8 } \right) \right) } \end{array}\end{lgathered}

=(1+cos

8

π

)(1+sin(

8

π

))(1−sin(

8

π

))(1−cos(

8

π

))

=(1−cos

2

8

π

)(1−sin

2

(

8

π

))

\begin{lgathered}\begin{array} { l } { = \sin ^ { 2 } \left( \frac { \pi } { 8 } \right) \cos ^ { 2 } \left( \frac { \pi } { 8 } \right) } \\\\ { = \frac { 1 } { 4 } \times \left( 2 \sin \left( \frac { \pi } { 8 } \right) \cos \left( \frac { \pi } { 8 } \right) \right) ^ { 2 } } \end{array}\end{lgathered}

=sin

2

(

8

π

)cos

2

(

8

π

)

=

4

1

×(2sin(

8

π

)cos(

8

π

))

2

Using double angle formula,

\begin{lgathered}\begin{array} { l } { = \frac { 1 } { 4 } \times \sin ^ { 2 } \left( \frac { 2 \pi } { 8 } \right) = \frac { 1 } { 4 } \times \sin ^ { 2 } \left( \frac { \pi } { 4 } \right) } \\\\ { = \frac { 1 } { 4 } \times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } = \frac { 1 } { 8 } } \end{array}\end{lgathered}

=

4

1

×sin

2

(

8

)=

4

1

×sin

2

(

4

π

)

=

4

1

×(

2

1

)

2

=

8

1

Hence,

\left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) = \frac { 1 } { 8 }(1+cos

8

π

)(1+cos

8

)(1+cos

8

Similar questions