Math, asked by Chaudharykapil3141, 1 year ago

Sin 8pi/3 cos 23pi/6 + cos 13pi/3 sin 35pi/6 = 1/2

Answers

Answered by ShaikJavidbasha
26

Answer:

Step-by-step explanation:

Attachments:
Answered by dikshaagarwal4442
0

Answer:

sin\frac{8\pi }{3}. cos\frac{23\pi }{6} + cos\frac{13\pi }{3}. sin\frac{35\pi }{6} = \frac{1}{2}

Step-by-step explanation:

  • We have to prove that, sin\frac{8\pi }{3}. cos\frac{23\pi }{6} + cos\frac{13\pi }{3}. sin\frac{35\pi }{6} = \frac{1}{2}
  • sin\frac{8\pi }{3} = sin (3\pi -\frac{\pi }{3})

                   = sin\frac{\pi }{3}  

  • cos\frac{23\pi }{6} = cos(4\pi - \frac{\pi }{6} )

                   = cos\frac{\pi }{6}

  • cos\frac{13\pi }{3} = cos(4\pi + \frac{\pi }{3})

                   = cos\frac{\pi }{3}

  • sin\frac{35\pi }{6} = sin(6\pi - \frac{\pi }{6})

                  = - sin\frac{\pi }{6}

  • sin\frac{8\pi }{3}. cos\frac{23\pi }{6} + cos\frac{13\pi }{3}. sin\frac{35\pi }{6}

                       = sin\frac{\pi }{3} cos\frac{\pi }{6} - cos\frac{\pi }{3} sin\frac{\pi }{6}

                      = sin (\frac{\pi }{3} - \frac{\pi }{6})      [as we know sin(A-B) = sinAcosB - cosAsinB]

                      = sin\frac{\pi }{6}

                      = \frac{1}{2}

∴sin\frac{8\pi }{3}. cos\frac{23\pi }{6} + cos\frac{13\pi }{3}. sin\frac{35\pi }{6} = \frac{1}{2} [ proved]

Similar questions