Math, asked by karyatiVadhar857, 1 year ago

Sin(90-a)/1+sina+cosa/1-cos(90-a)prove 2seca

Answers

Answered by lillymolleti492002
4

Answer:

please mark it as brainliest

#BAL answerwithquality

Attachments:
Answered by harendrachoubay
9

\dfrac{\sin(90-A)}{1+\sin A}+\dfrac{\cos A}{1-\cos(90-A)}=2\sec A, proved.

Step-by-step explanation:

To prove that, \dfrac{\sin(90-A)}{1+\sin A}+\dfrac{\cos A}{1-\cos(90-A)}=2\sec A

L.H.S. = \dfrac{\sin(90-A)}{1+\sin A}+\dfrac{\cos A}{1-\cos(90-A)}

= \dfrac{\cos A}{1+\sin A}+\dfrac{\cos A}{1-\sin A}

Using the trigonometric identity,

\cos A=\sin(90-A)

and \sin A=\cos(90-A)

= \dfrac{\cos A(1-\sin A)+\cos A(1+\sin A)}{(1+\sin A)(1-\sin A)}

= \dfrac{\cos A-\cos A\sin A+\cos A+\cos A\sin A}{1^2-\sin^2 A}

Using the algebraic identity,

a^{2}-b^{2} =(a+b)(a-b)

= \dfrac{\cos A+\cos A}{1-\sin^2 A}

= \dfrac{2\cos A}{\cos^2 A}

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

= \dfrac{2}{\cos A}

Using the trigonometric identity,

\sec A=\dfrac{1}{\cos A}

= 2\sec A

= R.H.S., proved.

Thus, \dfrac{\sin(90-A)}{1+\sin A}+\dfrac{\cos A}{1-\cos(90-A)}=2\sec A, proved.

Similar questions