Math, asked by prerna6321, 11 months ago

sin 90 degree minus theta cos 90 degree minus theta is equals to 10 theta upon 1 + 10 square theta​

Answers

Answered by MaheswariS
7

\textbf{To prove:}

sin(90^{\circ}-\theta)\,cos(90^{\circ}-\theta)=\dfrac{tan\,\theta}{1+\tan^2\theta}

\text{Consider,}

sin(90^{\circ}-\theta)\,cos(90^{\circ}-\theta)

=cos\,\theta\,sin\,\theta

\text{Multiply both numerator and denominator by $cos\theta$}

=cos^2\theta\,\dfrac{sin\,\theta}{cos\,\theta}

=cos^2\theta\,tan\,\theta

=\dfrac{tan\,\theta}{sec^2\theta}

=\dfrac{tan\,\theta}{1+tan^2\theta}

\therefore\bf\,sin(90^{\circ}-\theta)\,cos(90^{\circ}-\theta)=\dfrac{tan\,\theta}{1+\tan^2\theta}

Find more:

Cos(90-theta)sec(90-theta)tan(theta)upon cosec(90-theta)sin(90-theta)cot(90-theta)+tan(90-theta)upon cot(theta) =2

https://brainly.in/question/4025386

Cot theta upon 1 + 10 square 90 minus theta minus sin theta into sin 90 minus theta

https://brainly.in/question/15059311

Answered by akshardohare
2

Answer:

tfifififfiififififififif

Similar questions