Math, asked by Shahed5704, 1 year ago

Sin(90-theta)/cosec(90-theta)-cot(90-theta) = 1+sin theta

Answers

Answered by san802
20

if u have any doubt pls ask me

Attachments:
Answered by pinquancaro
20

Hence proved  \frac{\sin (90-\theta)}{\csc(90-\theta)-\cot(90-\theta)}=1+\sin \theta

Step-by-step explanation:

Prove : \frac{\sin (90-\theta)}{\csc(90-\theta)-\cot(90-\theta)}=1+\sin \theta

Proof :

Taking LHS,

LHS=\frac{\sin (90-\theta)}{\csc(90-\theta)-\cot(90-\theta)}

Using trigonometric properties,

\sin(90-\theta)=\cos \theta\\\csc(90-\theta)=\sec \theta\\\cot(90-\theta)=\tan\theta

Substitute the values,

LHS=\frac{\cos \theta}{\sec \theta-\tan \theta}

LHS=\frac{\cos \theta}{\frac{1}{\cos \theta}-\frac{\sin\theta}{\cos \theta}}

LHS=\frac{\cos^2 \theta}{1-\sin\theta}

Using trigonometric property, \cos^2\theta=1-\sin^2\theta

LHS=\frac{1-\sin^2 \theta}{1-\sin\theta}

LHS=\frac{(1-\sin \theta)(1+\sin\theta)}{1-\sin\theta}

LHS=1+\sin\theta

LHS=RHS

Hence proved.

#Learn more

EVALUATE : SIN THETA + COS THETA + SIN THETA COS (90°- THETA) COS THETA / SEC(90°-theta) + cos theta sin (90-theta)sin theta /cosec(90°-theta) - 2 sin(90°-theta) cos (90°-theta)

https://brainly.in/question/2500360

Similar questions