Math, asked by alisharajpal239, 1 day ago

sin( -90-theta ) +tan (90+theta) + cosec (90+theta) /cos (-180-theta) +cot (180+theta) + sec (180+theta)

Attachments:

Answers

Answered by talpadadilip417
0

Answer:

 \xcancel{\tt \red{\begin{array}{|c|c|c|c|c|}  \hline   X &  \sin  &  \cos  &  \tan  &  \cot  \\ \hline -a & -\sin \alpha  &  +\cos \alpha  &  -\tan \alpha  & -\cot \alpha  \\  90^{\circ}-\alpha  &  +\cos \alpha  &  +\sin \alpha  &  +\cot \alpha  &  +\tan \alpha \\ 90^{\circ}+\alpha  &  +\cos \alpha  & -\sin \alpha  &  -\cot \alpha  &  -\tan \alpha  \\  180^{\circ}-\alpha  &  +\sin \alpha  &  -\cos \alpha  &  -\tan \alpha  &  -\cot \alpha  \\  180^{\circ}+\alpha  &  -\sin \alpha  &  -\cos \alpha  &  +\tan \alpha  &  +\cot \alpha  \\  270^{\circ}-\alpha  &  -\cos \alpha  &  -\sin \alpha  &  +\cot \alpha  &  +\tan \alpha  \\  270^{\circ}+\alpha  &  -\cos \alpha  &  +\sin \alpha  &  -\cot \alpha  &  -\tan \alpha  \\  360^{\circ} k-\alpha  &  -\sin \alpha  & +\cos \alpha  &  -\tan \alpha  &  -\cot \alpha  \\  360^{\circ} k+\alpha  &  +\sin \alpha  &  +\cos \alpha  &  +\tan \alpha  &  +\cot \alpha \\ \hline \end{array}}}

Similar questions