Math, asked by Anonymous, 1 year ago

sin(90°-A) cos(90°-A)= tan A/1+tan^2A​

Answers

Answered by ravi9848267328
6

Answer:

Step-by-step explanation:

Hi ,

LHS = sin(90 - A ) * cos ( 90 - A )

= CosA sinA ----( 1 )

RHS = tanA / ( 1 + tan² A )

= tan A / sec² A

= ( SinA/cosA ) / ( 1/ cos² A )

= ( SinA cos² A ) / cosA

= SinAcosA ----( 2 )

From ( 1 ) and ( 2 ) ,

LHS = RHS


Anonymous: thanks a lot
ravi9848267328: wc
ravi9848267328: thx
Answered by ihrishi
0

Step-by-step explanation:

I will use alpha instead of cap a as angle

RHS \:   =  \frac{ \tan \alpha  }{1 +  { \tan }^{2}  \alpha }  =  \frac{ \frac{ \sin \alpha }{ \cos \alpha  } }{1 +  { \frac{ { \sin}^{2}  \alpha }{ { \cos}^{2}  \alpha } } } \\  =  \frac{ \frac{ \sin \:  \alpha  }{ \cos \alpha } }{ \frac{ { \cos}^{2} \alpha  +  { \sin }^{2}   \alpha }{ { \cos }^{2}  \alpha } }    \\ =   \frac{ \frac{ \sin \:  \alpha  }{ \cos \alpha } }{ \frac{ 1 }{ { \cos }^{2}  \alpha } } =  \frac{  \sin \alpha  }{ \cos \alpha  }  \times  { \cos}^{2}  \alpha   \\ =  \sin \:  \alpha  \cos \alpha  \\  =   \cos( {90}^{0} -  \alpha  )  \sin( {90}^{0}  -  \alpha )  =LHS\\ since \:  \\ sin( {90}^{0}  -  \alpha ) \:  =  \cos \alpha  \:  \\ and \\ cos( {90}^{0}  -  \alpha ) \:  =  \sin \alpha

Similar questions