Sin a / 1 + cos a + 1 + cos a / sin a
Answers
Answer:
a flapdoodle be told relations Russia
Step-by-step explanation:
variations room cm X Tim blastula I FD 8
Step-by-step explanation:
solution:
Given ,
LHS = \frac{sinA}{1+cosA}+\frac{1+cosA}{sinA}
1+cosA
sinA
+
sinA
1+cosA
= \frac{sin^{2}A+(1+cosA)^{2}}{sinA(1+cosA)}
sinA(1+cosA)
sin
2
A+(1+cosA)
2
= \frac{sin^{2}A+1^{2}+2\times 1\times cosA+cos^{2}A}{sinA(1+cosA)}
sinA(1+cosA)
sin
2
A+1
2
+2×1×cosA+cos
2
A
= \frac{(sin^{2}A+cos^{2}A+1+2cosA)}{sinA(1+cosA)}
sinA(1+cosA)
(sin
2
A+cos
2
A+1+2cosA)
/* By Trigonometric identity:
sin²A + cos²A = 1 */
= \frac{1+1+2cosA}{sinA(1+cosA)}
sinA(1+cosA)
1+1+2cosA
/* Take 2 , common,we get */
= \frac{2(1+cosA)}{sinA(1+cosA)}
sinA(1+cosA)
2(1+cosA)
After cancellation, we get
= \frac{2}{sinA}
sinA
2
= 2cosecA2cosecA
= RHS
Therefore,
\frac{sinA}{1+cosA}+\frac{1+cosA}{sinA}
1+cosA
sinA
+
sinA
1+cosA
= 2cosecA2cosecA