Sin A / 1 + Cos A = 1- Cos A / Sin A prove
Answers
Answered by
0
Answer:
Step-by-step explanation:
L.H.S. = sin A / ( 1 + cos A ) [∵ Rationalising the denominator ]
= [ sin A / ( 1 +cos A ) ] / [ ( 1 - cos A ) / ( 1 - cos A ) ]
= [ sin A ( 1 - cos A ) ] / [( 1 + cos A ) / ( 1 - cos A ) ]
= [ sin A ( 1 - cos A ) ] / [ 1 - cos² A ]
= [ sin A ( 1 - cos A ] / ( sin² A )
= ( 1 - cos A ) / sin A
= R.H.S.
∴ L.H.S. = R.H.S.
Hence it is proved.
Similar questions