Sin A/ 1+Cos A + 1 + CosA/ sinA
Answers
To Find:
Taking LCM we get:
Using (a + b)(a + b) = (a + b)² we get:
Using (a + b)² = a² + b² + 2ab we get:
Using the identity sin²A + cos²A = 1 we get:
Take 2 out since it's common to both 2 and 2cosA.
Cancelling (1 + cosA) in the numerator & denominator we get:
Using 1/sinA = cosecA
Hence solved.
Taking LCM we get:
\Longrightarrow \sf \dfrac{(sinA)(sinA) + (1 + cosA)(1 + cosA)}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
(sinA)(sinA)+(1+cosA)(1+cosA)
Using (a + b)(a + b) = (a + b)² we get:
\Longrightarrow \sf \dfrac{sin^2A + (1 + cosA)^2}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
sin
2
A+(1+cosA)
2
Using (a + b)² = a² + b² + 2ab we get:
\Longrightarrow \sf \dfrac{sin^2A + (1)^{2} + (cosA)^2 + 2(1)(cosA)}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
sin
2
A+(1)
2
+(cosA)
2
+2(1)(cosA)
\Longrightarrow \sf \dfrac{sin^2A + 1 + cos^2A + 2cosA}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
sin
2
A+1+cos
2
A+2cosA
\Longrightarrow \sf \dfrac{sin^2A + cos^2A + 1 + 2cosA}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
sin
2
A+cos
2
A+1+2cosA
Using the identity sin²A + cos²A = 1 we get:
\Longrightarrow \sf \dfrac{1 + 1 + 2cosA}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
1+1+2cosA
\Longrightarrow \sf \dfrac{2 + 2cosA}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
2+2cosA
Take 2 out since it's common to both 2 and 2cosA.
\Longrightarrow \sf \dfrac{2(1 + cosA)}{(1 + cosA)(sinA)}⟹
(1+cosA)(sinA)
2(1+cosA)
Cancelling (1 + cosA) in the numerator & denominator we get:
\Longrightarrow \sf \dfrac{2}{sinA}⟹
sinA
2
\Longrightarrow \sf 2 \times \dfrac{1}{sinA}⟹2×
sinA
1
Using 1/sinA = cosecA
\Longrightarrow \sf 2cosecA⟹2cosecA
Hence solved.