Math, asked by yashpthk, 11 months ago

sin A/1+cos A= cosec A - cot A​

Answers

Answered by rohit2014
0

Answer:

sinA/1+cosA=cosecA-cotA

sinA/1+cosA=1/sinA-cosA/sinA

sinA/1+cosA=1-cosA/sinA

sin^2 A=1-cos^2 A(by cross multiplying)

sin^2 A=sin^2 A

1=1

Step-by-step explanation:

hence proved LHS=RHS

hope u may understand

plz follow me and mark me as a brainliest and also thnxs to my answer

Answered by Anonymous
1

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{solution}

 l.h.s.  = \frac{ \sin(a) }{1 +  \cos(a) }   \\  =  \frac{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} )  }{2 \cos {}^{2} ( \frac{a}{2} ) }  \\  =  \frac{ \sin( \frac{a}{2} ) }{ \cos( \frac{a}{2} ) }  \\  =   \tan( \frac{a}{2} )  \\ r.h.s. =  \cosec(a)  -    \cot(a)    \\  =  \frac{1}{ \sin(a) }  -  \frac{ \cos(a) }{ \sin(a) }  \\  =  \frac{1 -  \cos(a) }{ \sin(a) }  \\  =  \frac{2 \sin {}^{2} ( \frac{a}{2} ) }{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} )  }   \\  =  \frac{ \sin( \frac{a}{2} ) }{ \cos( \frac{a}{2} ) }  \\  =  \tan( \frac{a}{2} )  \\ therefore \:  \: l.h.s. = r.h.s.(proved)

\large\mathcal\red{hope\: this \: helps \:you......}

Similar questions