sin a / 1 - cos a = cosec a + cot a
Answers
Answered by
2
Answer:
cscA(1+cosA)(cscA−cotA)=1
LHS:
sinA
1
[1+cosA][
sinA
1
−
sinA
cosA
][∵cscA=
sinA
1
,cotA=
sin
A
cos
A
]
=
sinA
A
(1+cosA)
sinA
(1−cosA)
=
sin
2
A
1−cos
2
A
[∵ cos
2
A+sin
2
A=1 sin
2
A=1−cos
2
A]
=
sin
2
A
sin
2
A
=1=RHS
Answered by
1
Step-by-step explanation:
L H S
rationalising the denominator,
sina(1+cosa)/(1-cosa)(1+cosa)
= sina(1+cosa) /1-cos^2a
= sina(1+cosa)/sin^a
= 1+cosa/ sina
= coseca+cota
Therefore proved
L.H.S=R.H.S
Similar questions