Math, asked by souminandy2003, 9 months ago

sin a / 1 - cos a = cosec A + cot a prove that​

Answers

Answered by Anonymous
2

{\underline{\underline{\huge{\mathtt{Question:-}}}}}

Prove that,

{\bold{\frac{sinA}{1-cosA}=cosecA+cotA}}

{\underline{\underline{\huge{\mathtt{Solution:-}}}}}

† Taking L.H.S †

{\bold{\frac{sinA}{1-cosA}}}

____________________________________

★Multiply numerator and denominator with (1+cosA)

_____________________________________

{\bold{→\frac{sinA(1+cosA)}{(1-cosA)(1+cosA)}}}

{\bold{→\frac{sinA(1+cosA)}{(1-cos^2A)}}}

_____________________________________

★We know that 1-cos²A = sin²A★

_____________________________________

{\bold{→\frac{sinA+sinA.cosA}{sin^2A}}}

{\bold{→\frac{sinA}{sin^2A}+\frac{sinA.cosA}{sin^2A}}}

{\bold{→\frac{1}{sinA}+{cosA}{sinA}}}

______________________________________

★We know that 1/sinA= cosecA and cosA/sinA= cotA★

______________________________________

{\red{\bold{cosecA+cotA}}}

.•.{\boxed{\green{\bold{L.H.S=R.H.S}}}}

Hence proved_____________!!

{\underline{\underline{\large{\mathtt{More\: information:-}}}}}

Some formulas related trigonometry:-

  • sin²A + cos²A = 1
  • 1+tan²A = sec²A
  • 1+cot²A = cosec²A
Answered by silentlover45
0

\large\underline\mathrm{Solution}

  \huge \mathfrak{L.H.S:-}

\implies sinA/(1 - cosA)

  • multiple numerator and denominator with (1 + cosA)

\implies sinA(1 + cosA)/(1 - cosA)(1 + cosA)

\implies sinA(1 + cosA)/(1 + cos²A)

\large\underline\mathrm{Now, \: \:     [(1 \; - \; cosA²) \: = \: sin²A]}

\implies sinA + sinA.cosA / sin²A

\implies sinA/sin²A + sinA.cosA/sin²A

\implies 1/sinA + cosA/sinA

\implies cosecA + cotA.

  \huge \mathfrak{L.H.S \: = \: R.H.S:-}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions