Math, asked by mayakashyap, 1 year ago

sin A / 1+cosA + 1+cos A / sin A = 2 cosec A

Answers

Answered by VilokNayak
6
HOLA

========================

 \frac{sin}{ \: 1 \:  + cos}  \:  +   \:  \frac{1 \:  +  \: cos}{sin}   =  \: 2 \: cosec \\  \\  \\  \frac{sin}{cos}  =  \: tan \\  \\  \frac{cos}{sin}  =  \: cot \\  \\ 1 \:  +  \: tan \:  +  \: 1 \:  +  \: cot \\  \\ tan =  \:  \frac{1}{cot}  =  \: cot \\  \\ 1 \:  +  \: cot \:  +  \: 1 \:  +  \: cot \\  \\ 2 \:  +  \: cot {}^{2}  =  \: 2cosec \\  \\ here \: we \: have \: used \:  1 \:  +  \: cot {}^{2}

========================

HOPE U UNDERSTAND ❤❤❤
Answered by abhi569
14

  =  > \frac{ \sin(a) }{1 +  \cos(a) }  +  \frac{1 +  \cos(a) }{ \sin(a) }  \\  \\  \\  \\




 \text{Multiply and divide by, }1 - cos(a)  \:  \: in  \:  \:  \frac{ sin(a) }{1 +  \cos(a) }


 =  >  \frac{  \sin(a)  \times  ( 1  -  \cos(a) )}{(1  +  \cos(a) ) \times (1 -  \cos(a)) }  +  \frac{1 +  \cos(a) }{ \sin(a) }  \\  \\  \\  \\  =  >  \frac{ \sin(a)(1 -  \cos(a) )}{1 -  \cos ^{2} (a) }  +  \frac{1 +  \cos(a) }{ \sin(a) }  \\  \\  \\  \\    =  >   \frac{ \sin(a) -  \sin(a)   \cos(a) }{  \sin ^{2} (a)  }  +  \frac{1 +  \cos(a) }{ \sin(a) }  \\  \\  \\  \\  =  >   \frac{ \sin(a)  -  \sin(a) \cos(a) +  {(1 +  \cos(a))  \sin(a)   }  }{ \sin ^{2} (a) }  \\  \\  \\  \\   =  >  \frac{ \sin(a) -  \sin(a) \cos(a)   +  \sin(a)  +  \cos  (a)   \sin(a) }{ \sin^{2} (a) }  \\  \\  \\  \\  =  >  \frac{2 \sin(a) }{  \sin ^{2} (a) }  \\  \\  \\  \\  =  >  \frac{2}{ \sin(a) }  \\  \\  \\  \\ 2 cosec(a)





Hence, proved.

abhi569: (-:
Similar questions