Math, asked by harshit5939, 11 months ago

Sin A/1 +Cot A - Cos A/1+Tan A =Sina A - Cos A

Answers

Answered by Anonymous
35

Question :

Prove that,

\sf{\dfrac{sinA}{1+cotA}-\dfrac{cosA}{1+tanA}=sinA-cosA}

Solution :

Taking L.H.S,

\sf{\dfrac{sinA}{1+cotA}-\dfrac{cosA}{1+tanA}}

Write \sf{cotA=\frac{cosA}{sinA}} and \sf{tanA=\frac{sinA}{cosA}}

\implies\sf{\dfrac{sinA}{1+\dfrac{cosA}{sinA}}-\dfrac{cosA}{1+\dfrac{sinA}{cosA}}}

\implies\sf{\dfrac{sinA}{\dfrac{sinA+cosA}{sinA}}-\dfrac{cosA}{\dfrac{cosA+sinA}{cosA}}}

\implies\sf{sinA\times\dfrac{sinA}{sinA+cosA}-cosA\times\dfrac{cosA}{cosA+sinA}}

\implies\sf{\dfrac{sin^2A}{sinA+cosA}-\dfrac{cos^2A}{sinA+cosA}}

\implies\sf{\dfrac{sin^2A-cos^2A}{sinA+cosA}}

Use the identity : a²-b² = ( a+b)(a-b)

\implies\sf{\dfrac{(sinA+cosA)(sinA-cosA)}{sinA+cosA}}

\implies\sf{sinA-cosA}

L.H.S = R.H.S [ Proved ]

______________________

Some identities related to trigonometry :

• sin²A + cos²A = 1

• 1 + tan²A = sec²A

• 1 + cot²A = cosec²A

• cos²A - sin²A = cos2A

_____________________

Answered by BrainlyPopularman
9

Question :

▪︎Prove that :   \\   \dfrac{ \sin(A) }{1 +  \cot(A) } -  \dfrac{ \cos(A) }{1 +  \tan(A) }  =\sin(A) - \cos(A) \\

ANSWER :

Taking L.H.S.

  \\  =   \dfrac{ \sin(A) }{1 +  \cot(A) } -  \dfrac{ \cos(A) }{1 +  \tan(A) }   \\

We know that

  \\   \implies \tan(A)  =  \dfrac{ \sin(A) }{ \cos(A) } \:  \: and \:  \:  \cot(A)  =  \dfrac{ \cos(A) }{ \sin(A) }   \\

So , that –

  \\  =   \dfrac{ \sin(A) }{1 +[  \dfrac{ \cos(A) }{ \sin(A) }]} -  \dfrac{ \cos(A) }{1 + [ \dfrac{ \sin(A) }{ \cos(A) } ]}   \\

  \\  =   \dfrac{ \sin(A) }{ \dfrac{ \sin(A) + \cos(A) }{ \sin(A) }} -  \dfrac{ \cos(A) }{  \dfrac{\cos(A) + \sin(A) }{ \cos(A) } }   \\

  \\  =   \dfrac{ \sin^{2} (A) }{ \sin(A)  +  \cos(A) } -  \dfrac{ \cos^{2} (A) }{ \sin(A)  +  \cos(A)}   \\

  \\  =   \dfrac{ \sin^{2} (A) - \cos^{2} (A)}{ \sin(A)  +  \cos(A) } \\

• We know that –

  \\  \implies { \bold{ {a}^{2}  -  {b}^{2}   =  (a + b)(a - b) }} \\

• So , that –

  \\  =   \dfrac{[\sin (A) - \cos (A)]  [\sin(A)  +  \cos(A)]}{[\sin(A)  +  \cos(A)]} \\

  \\  =   \dfrac{[\sin (A) - \cos (A)] {\cancel{ [\sin(A)  +  \cos(A)]}}}{ \cancel{[\sin(A)  +  \cos(A)]}} \\

  \\  =   \sin (A) - \cos (A)\\

= R.H.S. (Hence proved)

Similar questions