Math, asked by Ghosha1324, 6 months ago

Sin A=15/17 and cos B=-4/5 then find sin(A+B),cos(A-B) and tan (A+B)

Answers

Answered by pranalipsawant98
2

 \sin(a + b)  =  \sin(a)  \cos(b)  +  \cos(a)  \sin(b)  \\  =  \frac{15}{17}  \times  \frac{ - 4}{5}  +  \frac{8}{17}  \times  \frac{3}{5}  \ = \  \frac{ - 12}{17}  +  \frac{24}{85}  \\  =  \frac{ - 60 + 24}{85}  \\  =  \frac{ - 36}{85}

 \cos(a - b)  =  \cos(a)  \cos(b)  +  \sin(a)  \sin(b)  \\  =  \frac{8}{17}  \times  \frac{ - 4}{5}  +  \frac{15}{17}  \times  \frac{3}{5}  \\  =  \frac{ - 32}{85}  +  \frac{45}{85}  \\  =  \frac{13}{85}

 \tan(a + b)  =   \frac{ \tan(a) +  \tan(b)  }{1 -  \tan(a) \tan(b)  }  \\

 \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  =  \frac{15}{8}  \\  \\  \tan(b)  =   \frac{ \sin(b) }{ \cos(b) }  \\  =  \frac{ - 3}{4}

therefore

 \tan(a + b)  =  \frac{ \frac{15}{8} +  \frac{ - 3}{4}  }{1 -  \frac{15}{8} \times  \frac{ - 3}{4}  }  \\  \frac{ \frac{11}{8} }{1 +  \frac{45}{32} }  \\  =  \frac{ \frac{11}{8} }{ \frac{77}{32} }  \\  =  \frac{11}{8}  \times  \frac{32}{77}  \\  =  \frac{4}{7}

Attachments:
Similar questions