Math, asked by Mantra2006, 8 months ago

sin A= 3/4
what is tan A​

Answers

Answered by Anonymous
6

Answer:

Given, sinA=43

⇒DCBC=43

⇒BC=3k and AC=4k

where k is the constant of proportionality.

By Pythagoras theorem, we have

AB2=AC2−BC2=(4k)2−(3k)2=7k2

⇒AB=7k

So, cosA=ACAB=4k7k=47

And tanA=ABBC=7k3k=73

Step-by-step explanation:

hope you like have a nice day ahead ✌✌

Answered by raghavpaltanwale
1

Answer:

tan A=3√7/7

Step-by-step explanation:

sin A= 3/4

sin A= opposite/hypotenuse

let,

opposite=3x

hypotenuse=4x

hence,

(hypotenuse)²=(opposite)²+(adjacent)²

hence,

(adajcent)²=(hypotenuse)²-(opposite)²

(adajcent)²=(4x)²-(3x)²

(adajcent)²=(16-9)x²

(adajcent)²=7x²

hence,

adjacent=(√7)x

so,

tan A= opposite/adjacent

tan A=3x/(√7)x

tan A=3/√7

tan A=3√7/7

Similar questions