Social Sciences, asked by shrinithi835, 8 months ago

sin A = 4/5.find 4 tan A - 5 cos A / sec A + 4 cos A.

pls do step by step
...​

Answers

Answered by SurajPShetty
1

Answer:

Answer:

\frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}=\frac{1}{2}

secθ+4cotθ

4tanθ−5cosθ

=

2

1

Step-by-step explanation:

Given : \sin\theta=\frac{4}{5}sinθ=

5

4

To find : The value of \frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}

secθ+4cotθ

4tanθ−5cosθ

Solution :

\sin\theta=\frac{4}{5}sinθ=

5

4

According to trigonometric properties,

\sin\theta=\frac{4}{5}=\frac{P}{H}sinθ=

5

4

=

H

P

i.e Perpendicular P=4, Hypotenuse H=5

Apply Pythagoras theorem,

B=\sqrt{H^2-P^2}B=

H

2

−P

2

B=\sqrt{5^2-4^2}B=

5

2

−4

2

B=\sqrt{25-16}B=

25−16

B=\sqrt{9}B=

9

B=3B=3

We know,

\cos\theta=\frac{B}{H}=\frac{3}{5}cosθ=

H

B

=

5

3

\tan\theta=\frac{P}{B}=\frac{4}{3}tanθ=

B

P

=

3

4

\cot\theta=\frac{B}{P}=\frac{3}{4}cotθ=

P

B

=

4

3

\sec\theta=\frac{H}{B}=\frac{5}{3}secθ=

B

H

=

3

5

Substitute the value in the expression,

=\frac{4(\frac{4}{3})-5(\frac{3}{5})}{(\frac{5}{3})+4(\frac{3}{4})}=

(

3

5

)+4(

4

3

)

4(

3

4

)−5(

5

3

)

=\frac{\frac{16}{3}-3}{\frac{5}{3}+3}=

3

5

+3

3

16

−3

=\frac{\frac{16-9}{3}}{\frac{5+9}{3}}=

3

5+9

3

16−9

=\frac{\frac{7}{3}}{\frac{14}{3}}=

3

14

3

7

=\frac{7}{3}\times \frac{3}{14}=

3

7

×

14

3

=\frac{1}{2}=

2

1

Therefore, \frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}=\frac{1}{2}

secθ+4cotθ

4tanθ−5cosθ

=

2

1

Explanation:

follow me and mark as brainliest

Similar questions