Math, asked by MichWorldCutiestGirl, 6 hours ago

sin (A+B) = 1, & sin (A-B) = 1/2 ; <A=? <B=?

Don't dare for Spam!​

Answers

Answered by SugaryHell22
17

Answer :-

sin (A + B) = 1 = sin 90⁰ A + B = 90⁰  ____(i)

sin (A-B) = 1/2 = sin 30⁰ A - B = 30⁰  ____(ii)

Solving eq. (i) and (ii), A = 60⁰ and B = 30⁰

For More Information

  • Visit :- https://brainly.in/question/2217186

Answered by Anonymous
35

Given :-

 \quad \leadsto \quad \sf \sin ( A + B ) = 1

 \quad \leadsto \quad \sf \sin ( A - B ) = \dfrac{1}{2}

To Find :-

Value of  \sf \angle A \:\: and \:\: \angle B

Solution :-

Lets use the first given Trigonometric equation as follows ;

 \quad \leadsto \quad  \sf \sin ( A + B ) = 1

We knows that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \underbrace { \bf { \sin \dfrac{\pi}{2} = \sin 90° = 1 }}}}}}}{\bigstar}

Using this we can write the above as ;

 { : \implies \quad \sf \sin ( A + B ) = \sin 90°}

 { : \implies \quad \sf \sin^{-1} \{\sin ( A + B ) \} = 90}

 { : \implies \quad \sf \cancel{\sin^{-1}} \{\cancel{\sin} ( A + B ) \} = 90}

 { : \implies \quad \sf A + B = 90 \quad ----(i) }

Now , Consider the 2nd given Trigonometric Equation ;

 \quad \leadsto \quad \sf \sin ( A - B ) = \dfrac{1}{2}

We knows that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \underbrace {  \bf { \sin \dfrac{\pi}{6} = \sin 30° = \dfrac{1}{2} }}}}}}}{\bigstar}

Using this we can write the above as ;

 { : \implies \quad \sf \sin ( A - B ) = \sin 30°}

 { : \implies \quad \sf \sin^{-1} \{\sin ( A - B ) \} = 30}

 { : \implies \quad \sf \cancel{\sin^{-1}} \{\cancel{\sin} ( A - B ) \} = 30}

 { : \implies \quad \sf A - B = 30 \quad ----(ii) }

By elimination method , adding (i) & (ii) we have ;

 { : \implies \quad \sf A - B + A + B = 30° + 90° }

 { : \implies \quad \sf A - \cancel{B} + A + \cancel{B} = 120 }

 { : \implies \quad \sf 2A = 120}

 { : \implies \quad \sf  A = \dfrac{120}{2} }

 { : \implies \quad \therefore \sf \angle A = 60° }

Also , By eq. (ii) we have ;

 { : \implies \quad \sf 60 - B = 30° }

 { : \implies \quad \sf 60 - 30 = B }

 { : \implies \quad \therefore \sf \angle B = 30° }

Henceforth , The Required Measures of  \sf \angle A and  \sf \angle B are 60° and 30°

Similar questions