Math, asked by devisathyasp, 7 hours ago

sin (A+B) = 1, & sin (A-B & sin (A-B) = 1 ; Les? /B=2​

Answers

Answered by diwanamrmznu
7

★given:-

  • sin (A+B) = 1

  • sin (A-B) = 1

★find:-

  • value of A and B

★solution:-

  •  \implies \red{ \sin(A+B) = 1}

we know that

  •  \implies \star \pink{ \sin 90 \degree = 1}

  •  \implies \red{ \sin(A  +  B) =  \sin90 \degree }

do comparison

  •  \implies \red{ A+B = 90 } -  -  - (1)

similarly

 \implies \purple{ \sin(A - B) = 1}

 \implies \purple{ \sin(A - B) =  \sin90 \degree }  \\

 \implies \purple{A - B =  90  }  -  -  - (2) \\

addition of EQ 1 and 2

 \implies \:  \red{A+B} +  \purple{A - B} =  \red{90 } +  \purple{90} \\

 \implies \pink{2A = 180 \degree} \\  \\  \\  \implies \pink{A =  \frac{180}{2} }  \\  \\  \\  \implies \pink{A = 90}

A value put on EQ 1

 \implies \green{90  + B = 90} \\  \\  \\  \implies \green{B = 90 - 90 = 0}

================================

answer

\star\pink{A = 90}

\star\green{B = 0}

==============================

I hope it helps you

Similar questions