Math, asked by spranjal020, 1 day ago

sin(a+b)cos(a-b) + sin(a-b)cos(a+b)=sin2a​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: sin(a + b)cos(a - b) + sin(a - b)cos(a + b) \\

On multiply and divide by 2, we get

\rm \: \dfrac{1}{2}\bigg(sin(a + b)cos(a - b) + sin(a - b)cos(a + b)\bigg) \\

We know,

\boxed{\tt{ 2sinxcosy = sin(x + y) + sin(x - y) \: }} \\

So, using this identity, we get

\rm \:  = \dfrac{1}{2}\bigg(sin(a + b + a - b) + sin(a + b - a + b) + sin(a - b + a + b) + sin(a - b - a - b)\bigg)

\rm \:  = \dfrac{1}{2}\bigg(sin2a + sin2b + sin2a + sin( - 2b)\bigg)

We know,

\boxed{\tt{ sin( - x) =  - sinx \: }} \\

So, using this, we get

\rm \:  = \dfrac{1}{2}\bigg(sin2a + sin2b + sin2a  -  sin2b\bigg)

\rm \:  = \dfrac{1}{2}\bigg(2 \: sin2a \bigg)

\rm \:  =  \: sin2a \\

Hence,

\boxed{\tt{ sin(a + b)cos(a - b) + sin(a - b)cos(a + b) = sin2a}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ cos(x + y) + cos(x - y) = 2cosxcosy \: }} \\

\boxed{\tt{ cos(x - y) - cos(x + y) = 2sinx \: siny \: }} \\

\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{ sinx  -  siny = 2sin\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x + y}{2} \bigg] \: }} \\

\boxed{\tt{ cosx + cosy = 2cos\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x + y}{2} \bigg] \: }} \\

\boxed{\tt{ cosx  -  cosy = -  2sin\bigg[\dfrac{x  -  y}{2} \bigg]sin\bigg[\dfrac{x + y}{2} \bigg] \: }} \\

Answered by talpadadilip417
2

Step-by-step explanation:

  \boxed{\sf \red{ \underline{\underline{\mathbb       {GIVEN:}}} \sf \sin(A+B) \cos(A-B) +  \sin(A-B) \cos(A+B)= \sin2A}}

 \boxed{ \sf \pink{ \underline {\underline{\bullet To \:  \:  Find : }} \:  \sin(2A) }}

 \sf \blue{  \implies\sin(A+B) \cos(A-B) +  \sin(A-B) \cos(A+B)}

 \sf \purple{ \implies\sin(A+ \cancel{B }+ A -  \cancel{B}) }

 \sf \orange { \implies\sin(2A)  = L.H.S}

Similar questions