sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=0.Proof
Answers
Answered by
121
Given, sin(a-b)/cos a cos b + sin(b-c)/cos b cos c + sin(c-a)/cos c cos a
= sin a cos b - cos a sin b/cos a cos b + sin b cos c - cos b sin c/cos b cos c + sin c cos a - cos c sin a/cos c cos a
= sin a cos b/cos a cos b - cos a sin b/cos a cos b + sin b cos c/cos b cos c - cos b sinc/cos b cos c + sin c cos a/cos c cos a - cos c sin a/cos c cos a
= tan a - tan b + tan b - tan c + tan c - tan a
= 0.
Hope this helps!
= sin a cos b - cos a sin b/cos a cos b + sin b cos c - cos b sin c/cos b cos c + sin c cos a - cos c sin a/cos c cos a
= sin a cos b/cos a cos b - cos a sin b/cos a cos b + sin b cos c/cos b cos c - cos b sinc/cos b cos c + sin c cos a/cos c cos a - cos c sin a/cos c cos a
= tan a - tan b + tan b - tan c + tan c - tan a
= 0.
Hope this helps!
Zantastic:
please try the other question too
Answered by
69
hello users .....
we have to prove that
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=0
solution:-
formula's used:
sin (a -b) = sin a cos b - cos a sin b
here
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=
{(sin A cos B - cos A sin B ) / cos A cos B } + { (sin B cos C - cos C sin B) /
cos B cos C } + { ( sin C cos A - cos C sin A) / cos C cos A }
= {sin A cos B / cos A cos B - cos A sin B / cos A cos B } + { sin B cos C / cos B cos C - cos B sin C / cos B cos C } + { sin C cos A / cos C cos A - cos C sin A / cos C cos A }
= sin A / cos A - sin B / cos B + sin B /cos B - sin C / cos C + sin C / cos C - sin A / cos A
= tan A - tan B + tan B - tan C + tan C - tan A
= (tan A - tan A ) + ( tan B - tan B ) + ( tan C - tan C ) = 0
hence;
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=0
✪✵✪ hope it helps ✪✵✪
we have to prove that
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=0
solution:-
formula's used:
sin (a -b) = sin a cos b - cos a sin b
here
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=
{(sin A cos B - cos A sin B ) / cos A cos B } + { (sin B cos C - cos C sin B) /
cos B cos C } + { ( sin C cos A - cos C sin A) / cos C cos A }
= {sin A cos B / cos A cos B - cos A sin B / cos A cos B } + { sin B cos C / cos B cos C - cos B sin C / cos B cos C } + { sin C cos A / cos C cos A - cos C sin A / cos C cos A }
= sin A / cos A - sin B / cos B + sin B /cos B - sin C / cos C + sin C / cos C - sin A / cos A
= tan A - tan B + tan B - tan C + tan C - tan A
= (tan A - tan A ) + ( tan B - tan B ) + ( tan C - tan C ) = 0
hence;
Sin(A-B)/cosAcosB+sin(B-C)/cosBcosC+sin(C-A)/cosCcosA=0
✪✵✪ hope it helps ✪✵✪
Similar questions