Math, asked by vivekanandaswamysomu, 5 months ago

sin(A+B)=K and sin(A-B)=1/2;0<A+B<90°,<A><B.find angleA and angle B.​

Answers

Answered by VishnuPriya2801
6

Correct Question:-

If sin(A + B) = 1 and sin (A-B) = 1/2, 0 ≤ A + B ≤ 90o and A > B, then find ∠A and ∠B.

Answer:-

Given:

sin (A + B)° = 1

1 can be written as sin 90°.

So,

⟹ sin (A + B)° = sin 90°

On comparing both sides we get,

⟹ ∠A + ∠B = 90° -- equation (1)

Similarly,

⟹ sin (A - B)° = 1/2

⟹ sin (A - B)° = sin 30°

⟹ ∠A - ∠B = 30° -- equation (2)

Add equations (1) & (2).

⟹ ∠A + ∠B + ∠A - ∠B = 90° + 30°

⟹ 2∠A = 120°

⟹ ∠A = 120°/2

∠A = 60°

Substitute the value of A in equation (1)

⟹ ∠A + ∠B = 90°

⟹ 60° + ∠B = 90°

⟹ ∠B = 90° - 60°

∠B = 30°

Answered by mathdude500
1

 \large{ \underline{ \green{ \sf \: Given :-}}}

\rm :\implies\:sin(A + B) = 1

\rm :\implies\:sin(A  -  B) = \dfrac{1}{2}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &amp;\sf{angle \: A  \: and \: angle \:  B}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

It is given that

\rm :\implies\:sin(A + B) = 1

\rm :\implies\:sin(A + B) = sin90 \degree

\rm :\implies\: \boxed{ \pink{ \bf \:  A + B\:  =  \tt \: 90 \degree \: }} -  -  - (1)

Further,

It is given that

\rm :\implies\:sin(A  -  B) = \dfrac{1}{2}

\rm :\implies\:sin(A  -  B) = sin30\degree \:

\rm :\implies\: \boxed{ \pink{ \bf \:A  -  B  \:  =  \tt \:30\degree \: }} -  -  - (2)

Now,

Adding equation (1) and (2), we get

\rm :\implies\:2A  = 90\degree \: + 30\degree \:

\rm :\implies\:2A  = 120\degree \:

\rm :\implies\: \boxed{ \pink{ \bf \: A  \:  =  \tt \: 60\degree \:}}

On substituting, A = 60°, in equation (1), we get

\rm :\implies\:60\degree \: + B = 90\degree \:

\rm :\implies\:B = 90\degree \: - 60\degree \:

\rm :\implies\: \boxed{ \pink{ \bf \:  B \:  =  \tt \: 30\degree \:}}

Additional Information

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions