sin(A+B) + sin(A+B) = 2 sinAcosB how it will get
Answers
sin(a+b)+sin(a+b)=2sinAcosB
EXPLAINATION:WRITE SIN(A+B) FORMULA THAT IS sinAcosB+cosAsinB
and add it again with sinAcosB+cosAsinB
and simplify it you will get 2sinAcosB
Given to prove :-
sin(A+B) + sin(A-B) = 2sinAcosB
Formulaes Implemented :-
sin( A +B) = sinAcosB+ sinBcosA
sin (A - B) = sinAcosB - sinB cosA
Lets do !
sin(A+B) + sin(A- B) = sinAcosB+ sinBcosA + sinAcosB - sinB cosA
Keep like terms together
sinAcosB + sinAcosB + sinBcosA - sinBcosA
2sinBcosA get cancelled
Then ,
sinAcosB + sinA cosB
2sinAcosB
So, sin(A+B) + sin(A+B) = 2 sinAcosB
Hence proved !
Know more :-
cos(A + B) = cosAcosB - sinAsinB
cos ( A - B) = cosA cosB + sinAsinB
tan ( A +B ) = tanA + tanB / 1 - tanAtanB
tan( A-B) = tanA - tanB/1 + tanAtanB
cot ( A + B ) = cotBcotA -1 / cotB + cotA
cot ( A - B ) = cotB cotA + 1/ cotB - cotA
tan(45+ A) = 1+tanA/1 - tanA
tan (45 - A ) = 1-tanA/1 + tanA
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj