sin(A+B) – sin(A - B)= 2cosAsinB
prove it.
Answers
Answered by
1
Answer:
To Prove:
2cosA•sinA = sin(A+B)-sin(A-B)
Proof:
LHS = 2cosA • sinB
RHS
= sin(A+B)-sin(A-B)
= sinA•cosB+cosA•sinB -(sinA•cosB-cosA•sinB)
= sinA•cos+cosA•sinB -sinA•cosB+cosA•sinB
= 2cosA•sinB
Here,
LHS = RHS
Hence proved
______________________________
Identities used:
sin(A+B) = sinA•cosB+cosA•sinB
sin(A-B) = sinA•cosB-cosA•sinB
ocabanga44 and 11 more users found this answer helpful
Step-by-step explanation:
Similar questions