Math, asked by mreya0946, 20 days ago

sin(A+B) – sin(A - B)= 2cosAsinB

prove it.​

Answers

Answered by nitinnb35
1

Answer:

To Prove:

2cosA•sinA = sin(A+B)-sin(A-B)

Proof:

LHS = 2cosA • sinB

RHS

= sin(A+B)-sin(A-B)

= sinA•cosB+cosA•sinB -(sinA•cosB-cosA•sinB)

= sinA•cos+cosA•sinB -sinA•cosB+cosA•sinB

= 2cosA•sinB

Here,

LHS = RHS

Hence proved

______________________________

Identities used:

sin(A+B) = sinA•cosB+cosA•sinB

sin(A-B) = sinA•cosB-cosA•sinB

ocabanga44 and 11 more users found this answer helpful

Step-by-step explanation:

Similar questions