Math, asked by shafeer, 1 year ago

sin(a+b)sin(a-b)=cos^2b-cos^2a

Answers

Answered by nambalalakshmiprasad
1
sin(a+b)=sinacosb+cosa sin(b)
sin(a-b)=sinacosb-cosa sinb


=((sin(a+b)(sin(a-b))=(sin^acos^b-cos^asin^b)

(1-cos^a)=sin^a(its main)

=(1-cos^a)(cos^b)-(cos^a)(1-cos^b)
={cos^b-cos^acos^b-cos^a+cos^acos^b
=cos^b-cos^a

therefore ,its proved thatsin(a+b)sin(a-b)=cos^b-cos^a
Answered by MrImpeccable
13

{\bf{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}}

To Prove:

  •  \sin (A+B) \times \sin (A-B) = \cos^2B - \cos^2A

Proof:

 \text{We know that,} \\ \sin (A+B) = \sin A*\cos B + \cos A*\sin B,\,and \\ \sin (A-B) = \sin A*\cos B - \cos A*\sin B \\ Taking\,LHS\, \\ \implies \sin (A+B) \times \sin (A-B) \\ \implies \sin A*\cos B + \cos A*\sin B \times \sin A*\cos B - \cos A*\sin B \\ \implies \sin A*\cos B \times \sin A*\cos B - \sin A*\cos B \times \cos A*\sin B + \\ \cos A*\sin B \times \sin A*\cos B - \cos A*\sin B \times \cos A*\sin B \\ (\sin A*\cos B \times \cos A*\sin B \:gets\:cut.\:So,) \\ \implies (\sin A*\cos B)^2 - (\cos A*\sin B)^2 \\ \implies \sin^2A*\cos^2B - \cos^2A*\sin^2B \\ \implies (1-\cos^2A)*\cos^2B - \cos^2A*(1-\cos^2B) \\ \implies \cos^2B- \cos^2A*\cos^2B - \cos^2A + \cos^2A*\cos^2B \\ \implies \bold{ \cos^2B - \cos^2A } \\ =RHS \\ \\ Hence\:Proved\:!!!

Formulae Used:

  •  \sin (A+B) = \sin A*\cos B + \cos A*\sin B
  •  \sin (A-B) = \sin A*\cos B - \cos A*\sin B
  •  \sin^2\theta = 1 - \cos^2\theta

Learn More:

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions