Math, asked by RohithRohi, 1 year ago

sin(a+b) -sin(a-b) /cos(a+b) -cos (a-b) =​

Answers

Answered by Pavithraaruna
0

Answer:

Cot A

Step-by-step explanation:

Explanation is there in the image..

Hope the answer is helpful!

Plz do mark me as brainliest...

Attachments:
Answered by mrsonu962
2

Answer:

Formula used -

sin a +sin b = 2sin (a+b)/2 cos(a-b) /2

cos a - cos b = -2sin(a+b)/2 sin(a-b) /2

apply above formula on the question.

 \frac{ \sin( \alpha  +  \beta ) -  \sin( \alpha  -  \beta )  }{ \cos( \alpha  +  \beta ) -  \cos( \alpha  -  \beta )  }  \\  = \frac{ 2 \sin(  \frac{ (\alpha  +  \beta ) + ( \alpha  -  \beta )}{2} ) \cos( \frac{( \alpha  +  \beta ) - ( \alpha  -  \beta )}{2} )  }{ - 2 \sin(  \frac{( \alpha  +  \beta )  +  ( \alpha    -  \beta )}{2} )  \sin( \frac{ \alpha +  \beta ) - ( \alpha  -  \beta ) }{2} ) }  \\  =   \frac{\sin( \frac{ \alpha  +  \beta  +  \alpha  -  \beta }{2} )  \cos( \alpha  +  \beta  -  \alpha  +  \beta ) }{  - \sin( \frac{ \alpha  +  \beta  +  \alpha  -  \beta }{2} ) \sin( \frac{ \alpha  +  \beta  -  \alpha   +  \beta }{2} )  }   \\  =  \frac{ \cos( \frac{2 \beta }{2}  ) }{ -  \sin( \frac{2 \beta }{2} ) }  \\  =  -  \cot(  \frac{2 \beta }{2}  )  \\  =   - \cot( \beta )

Similar questions