Sin (A – B) = Sin A Cos B – cos A sin B Cos (A – B) = cos A Cos B – sin A sin B Find sin 15° cos 15°
Answers
Answered by
2
Answer:
Sin (A – B) = Sin A Cos B – cos A sin B …(i)
Cos (A – B) = cos A Cos B – sin A sin B …(ii)
Let A = 45° B = 30° we get on substituting in (i)⇒ Sin(45° − 30°) = Sin 45° cos 30°
Sin 15° = 1√2∙√32−1√2∙12∴ Sin15°=√3−12√2(ii) A = 45° B = 30° in equation (ii) we getCos (45° − 30°) cos 45° cos 30° + sin 45° sin 30°Cos 15° -1√2∙√32+1√2∙12Cos 15° ⇒√3+12√2
Answered by
2
Step-by-step explanation:
please mark me brainliest
Attachments:
Similar questions