Sin a - Cos A+1 divided by
Sin A+ CosA-1=
Sec A+ tan A
Answers
Answered by
1
Answer:
LHS
\frac{\sin A-\cos A+1}{\sin A+\cos A-1}sinA+cosA−1sinA−cosA+1
Divide numerator and denominator by cos A
\frac{\frac{sinA}{cosA}-\frac{cosA}{cosA}+\frac{1}{cos A}}{\frac{sinA}{cosA}+\frac{cosA}{cosA}-\frac{1}{cos A}}cosAsinA+cosAcosA−cosA1cosAsinA−cosAcosA+cosA1
\frac{tanA-1+secA}{tanA+1-secA}tanA+1−secAtanA−1+secA
Using the formula
tan A=\frac{sinA}{cos A}tanA=cosAsinA
sec A=\frac{1}{cos A}secA=cosA1
\frac{tanA+secA-1}{tanA-secA+sec^2A-tan^2 A}tanA−secA+sec2A−tan2AtanA+secA−1
Using the formula
sec^2 A-tan^2A=1sec2A−tan2A=1
\frac{tanA+secA-1}{tanA-secA+(secA-tanA)(secA+tanA)}tanA−secA+(secA−tanA)(secA+tanA)tanA+secA−1
\frac{tanA+secA-1}{secA-tanA(-1+secA+tanA)}secA−tanA(−1+secA+tanA)tanA+secA−1
\frac{1}{secA-tanA}secA−tanA1
LHS=RHS
Similar questions