(sin A+ cos A)(1-sin A cos A) = sin^3+cos^3 A
Prove that LHS is equals to RHS
Answers
Answered by
57
hope this helps you☺️
Attachments:
Anonymous:
thnks ☺️
Answered by
23
Hey dear friend
Taking R.H.S.
Sin³A+Cos³A
[By Id. (a³+b³)=(a+b)(a²+b²-ab)]
=>(SinA+CosA)(Sin²A+Cos²A-SinA CosA)
[By Id. (Sin²A+Cos²A=1)]
=>(SinA+CosA)(1-SinA CosA)
(SinA+CosA)(1-SinA CosA)=(SinA+CosA)
(1-SinA CosA)
As L.H.S.= R.H.S.
Hence Proved
perfectly fine pure correct answer
hope it helps you mark me as brainliest and follow me
Taking R.H.S.
Sin³A+Cos³A
[By Id. (a³+b³)=(a+b)(a²+b²-ab)]
=>(SinA+CosA)(Sin²A+Cos²A-SinA CosA)
[By Id. (Sin²A+Cos²A=1)]
=>(SinA+CosA)(1-SinA CosA)
(SinA+CosA)(1-SinA CosA)=(SinA+CosA)
(1-SinA CosA)
As L.H.S.= R.H.S.
Hence Proved
perfectly fine pure correct answer
hope it helps you mark me as brainliest and follow me
Similar questions