Math, asked by kush555munjal, 10 months ago

sin a-cos a + 1 upon sin a +cos a -1 is equal to 1 upon sec a -tana

Answers

Answered by ShuchiRecites
5

Solution

→ (sinA - cosA + 1)/(sinA + cosA - 1)

→ (sinA - cosA + 1)/(sinA + cosA - 1) × (sinA + cosA + 1)/(sinA + cosA + 1)

→ (sina - cosA + 1)(sinA + cosA + 1)/[(sinA + cosA)² - 1²]

→ (sin²A + sinA cosA + sinA - sinA cosA - cos²A - cosA + sinA + cosA + 1)/(sin²A + cos²A + 2 sinA cos - 1)

→ (sin²A + 2 sinA - cos²A + 1)/(1 + 2 sinA cosA - 1)

→ (sin²A + 2 sinA - 1 + sin²A + 1)/(2 sinA cosA)

→ (2 sin²A + 2 sinA)/2sinA cosA

→ 2sinA(sinA + 1)/2 sinA cosA

→ (sinA + 1)/cosA

→sinA/cosA + 1/cosA

→ tanA + secA

Multiplying by (secA - tanA)/(secA - tanA)

→ (tanA + secA)/1 × (secA - tanA)/(secA - tanA)

→ (sec²A - tan²A)/(secA - tanA)

→ 1/(secA - tanA)

Hence Proved

Answered by RvChaudharY50
64

\LARGE\underline{\underline{\sf \red{T}\blue{o}\:\green{P}\orange{r}\pink{o}\red{v}\blue{e}:}}

(sin a-cos a + 1)/(sin a +cos a -1) =1/(sec a -tana)

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

\textsf{Formula Used:-}

  • sec²a - tan²a = 1
  • (a²-b²) = (a+b)(a-b)
  • sina/cosa = tana
  • 1/cosa = seca

\textsf{See my solution in easiest way now :--}

______________________________

\red{\bold{\underline{\underline{LHS=}}}}

 \frac{ \sin(a) -  \cos(a)  + 1}{\sin(a)  +  \cos(a)   - 1} \\  \\ dividing \:  both \:  numerator  \: and  \: denominator \:  \\  by \:  cosa \: we \: get \:  \\  \\  \frac{ \tan(a) - 1 +  \sec(a)  }{\tan(a)  +  1  -  \sec(a)} \\  \\ putting \: value \: of \: 1 \: in \: denominator \\ as \:  \sec ^{2}a  -  \tan^{2}a  \: we \: get \\  \\  \frac{\tan(a) - 1 +  \sec(a) }{(\tan(a) - \sec(a)  + \sec ^{2}a  -  \tan^{2}a)} \\  \\  \frac{ \cancel{\tan(a) - 1 +  \sec(a)}}{( \sec(a) -  \tan(a) )(  \cancel{- 1 +  \sec(a) +  \tan(a) )}  }  \\  \\  \frac{1}{\sec(a) -  \tan(a)}

\red{\bold{\underline{\underline{=RHS}}}}

______________________________

\huge\underline\mathfrak\green{Hence\:Proved}

______________________________

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\underline\textsf{Double Angle Identities}

→ sin²θ = 2sinθcosθ

= \frac{2 \tanθ}{1+ \tan^{2}θ}

→ cos2θ = cos²θ- sin²θ

= 1 - 2sin²θ

= 2cos²θ- 1

= \frac{1- \tan^{2}θ}{1+ \tan^{2}θ}

→Tan2θ = \frac{2 \tanθ}{1- \tan^{2}θ}

\mathcal{BE\:\:BRAINLY}

Similar questions