(sin A + cos A)2 – 2 sin A cos A
Answers
Answer:
1
Step-by-step explanation:
Given--->
( SinA + CosA )² - 2SinA CosA
To find---> Value of given expression
Solution---> We have an identity as follows
( a + b )² = a² + b² + 2ab
We have a formula of trigonometery as follows
Sin²θ + Cos²θ = 1
Now returning to original problem
( SinA + CosA )² - 2SinA CosA
Applyig above identity , we get,
= ( SinA )² + ( CosA )² + 2SinA CosA - 2SinA CosA
- 2 SinA CosA and 2 SinA CosA cancel out each other and we get,
= Sin²A + Cos²A
Now applying above trigonometrical identity , we get,
= 1
Additional identity---->
1) 1 + tan²θ = Sec²θ
2) 1 + Cot²θ = Cosec²θ
3) ( a - b )² = a² + b² - 2ab
4) ( a + b )³ = a³ + b³ + 3ab ( a + b )
5) ( a - b )³ = a³ - b³ - 3ab ( a - b )
6) a³ + b³ = ( a + b ) ( a² + b² - ab )
7) a³ - b³ = ( a - b ) ( a² + b² + ab )
#Answerwithquality
#BAL
1
#answerwithquality #bal