(sin A - cos A)(cot A + tan A) = sec A- cosec A prove that
Answers
Answered by
30
(sinA - cosA)(cotA + tanA)=secA - cosecA
lhs → (sinA - cosA)[(cosA/sinA) + (sinA/cosA)]
=(sinA - cosA)(cos²A + sin²A/sinAcosA)
=(sinA - cosA)(1)/sinAcosA
=(sinA - cosA)/sinAcosA
=1/cosA - 1/sinA
=secA - cosecA
rhs → secA - cosecA
lhs=rhs
hence proved
lhs → (sinA - cosA)[(cosA/sinA) + (sinA/cosA)]
=(sinA - cosA)(cos²A + sin²A/sinAcosA)
=(sinA - cosA)(1)/sinAcosA
=(sinA - cosA)/sinAcosA
=1/cosA - 1/sinA
=secA - cosecA
rhs → secA - cosecA
lhs=rhs
hence proved
Answered by
29
Here's your Answer :)
Click on love button to share love
Click on love button to share love
Attachments:
Similar questions
Math,
8 months ago
Physics,
8 months ago
Science,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago