Math, asked by shettyshreya283gmail, 11 months ago

sin a - cos a ÷ sin a + cos a + sin a + cos a ÷ sin a - cos a = 2 ÷ 2sin^2 a-1​

Answers

Answered by sivaprasath
15

Answer:

Step-by-step explanation:

Given :

To prove :

\frac{sinA-cosA}{sinA+cosA} +\frac{sinA+cosA}{sinA-cosA} = \frac{2}{2sin^2A-1}

Solution :

We know that,

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

a^2-b^2=(a+b)(a-b)

sin^2A+cos^2A=1

LHS = \frac{sinA-cosA}{sinA+cosA} +\frac{sinA+cosA}{sinA-cosA}

\frac{(sinA-cosA)^2+(sinA+cosA)^2}{sinA+cosA)(sinA-cosA)}

\frac{(sin^2A+2sinAcosA+cos^2A)+(sin^2A-2sinAcosA+cos^2A)}{sin^2A-cos^2A}

\frac{2sin^2A+2cos^2A}{sin^2A-(1-sin^2A)}

\frac{2(sin^2A + cos^2A)}{sin^2A-1+sin^2A}

\frac{2(1)}{2sin^2A-1}

\frac{2}{2sin^2A-1} = RHS

Hence, proved,.

Similar questions