(sin A - cos A)/(sin A + cos A)+(sin A + cosA)/(sin A - cos A) =2/2 sin² A - 1
Answers
Answered by
6
Step-by-step explanation:
Refer to attachment.
The steps which you might see are lost in details, are the hints given below :-
Look at these identities :-
- sin²a + cos²a = 1
- cos²a = 1 - sin²a
So, when (-) was applied it changed the sign of denominator.
Other identities:-
- tan²a + 1 = sec²a
- cot²a +1 = cosec²a
- sina = 1/coseca
- cosa = 1/seca
- tana = sina/cosa
Attachments:
Answered by
3
Given :
(sin A - cos A)/(sin A + cos A)+
(sin A +cosA)/(sin A - cos A) =2/2 sin² A-1
Explain
Sin A+cosA/sin A-cos A+sin A-cos A/sin A+cosA= 2/sin²A-cos²A-2/1-2cos ²A
LHS Sin A+cosA/sin A-cos A+sin A-cos A/ sin A+cosA
((Sin A+cosA)² + (Sin A - cosA)²)/(sin A -cosA)(sinA+cosA)
={(sin²A+cos²A + 2sinA.cosA) + (sin²A+cos²A - 2sinA.cosA)]/(sin² A - cos²A)
= {(1+2sinA.cosA) + (1-2sinA.cosA) / (sin² A - cos²A)
[sin²0+cos²0=1]
= 1 + 1/ (sin² A - cos²A)
LHS = 2 / (sin² A - cos²A) = 2/(1- cos²A - cos²A) = 2/(1-2cos²A) = RHS
[sin²0 = 1 - cos²0]
Similar questions