Math, asked by darshinivdarshiniv56, 3 months ago


(sin A - cos A)/(sin A + cos A)+(sin A + cosA)/(sin A - cos A) =2/2 sin² A - 1​

Answers

Answered by TheMoonlìghtPhoenix
6

Step-by-step explanation:

Refer to attachment.

The steps which you might see are lost in details, are the hints given below :-

Look at these identities :-

  • sin²a + cos²a = 1
  • cos²a = 1 - sin²a

So, when (-) was applied it changed the sign of denominator.

Other identities:-

  • tan²a + 1 = sec²a
  • cot²a +1 = cosec²a
  • sina = 1/coseca
  • cosa = 1/seca
  • tana = sina/cosa .
Attachments:
Answered by abhishek917211
3

Given :

(sin A - cos A)/(sin A + cos A)+

(sin A +cosA)/(sin A - cos A) =2/2 sin² A-1

Explain

Sin A+cosA/sin A-cos A+sin A-cos A/sin A+cosA= 2/sin²A-cos²A-2/1-2cos ²A

LHS Sin A+cosA/sin A-cos A+sin A-cos A/ sin A+cosA

((Sin A+cosA)² + (Sin A - cosA)²)/(sin A -cosA)(sinA+cosA)

={(sin²A+cos²A + 2sinA.cosA) + (sin²A+cos²A - 2sinA.cosA)]/(sin² A - cos²A)

= {(1+2sinA.cosA) + (1-2sinA.cosA) / (sin² A - cos²A)

[sin²0+cos²0=1]

= 1 + 1/ (sin² A - cos²A)

LHS = 2 / (sin² A - cos²A) = 2/(1- cos²A - cos²A) = 2/(1-2cos²A) = RHS

[sin²0 = 1 - cos²0]

 \:  \:

Similar questions