Math, asked by udaychoudhary09850, 1 month ago

sin A + cos A / sin A - cosA = 7/3, find tan A? a.5/3 b.3/5 c.2/5 d.5/2​

Answers

Answered by anindyaadhikari13
2

Solution:

Given –

 \tt \longrightarrow \dfrac{ \sin(x) +  \cos(x)  }{ \sin(x) -  \cos(x)  } =  \dfrac{7}{3}

• We have to find out tan(x).

On cross multiplying, we get,

 \tt \longrightarrow 3(\sin(x) +  \cos(x))  = 7(\sin(x) -  \cos(x) )

 \tt \longrightarrow 3\sin(x) +  3\cos(x)  = 7\sin(x) -  7\cos(x)

 \tt \longrightarrow  3\cos(x)  + 7 \cos(x)  = 7\sin(x) -3 \sin(x)

 \tt \longrightarrow  10 \cos(x)  = 4\sin(x)

Dividing both sides by cos(x), we get,

 \tt \longrightarrow  10 = 4 \times  \dfrac{ \sin(x) }{ \cos(x) }

We know that,

 \tt\longrightarrow\dfrac{ \sin(x) }{ \cos(x) }  =  \tan(x)

So,

 \tt \longrightarrow 4 \tan(x)  = 10

 \tt \longrightarrow\tan(x)  =  \dfrac{10}{4}

 \tt \longrightarrow\tan(x)  =  \dfrac{5}{2}

• So, the value of tan(x) is 5/2.

Answer:

  • tan(x) = 2½.

Learn More:

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.
Similar questions