Math, asked by syedafsa1408, 4 months ago

Sin A + Cos B =1, A=30° and B is an acute angle, then find the value of B.​

Answers

Answered by narendra562phu
4

Hear,

Sin A + Cos B =1

& A = 30 degree

So,

Sin 30 + Cos B =1

also,

1/2 + Cos B = 1

& Cos B = 1-(1/2)

=> Cos B = 1/2

B = Cos (inverse) 1/2

B=60 degree is the answer

Answered by ShírIey
26

Given: Sin A + Cos B = 1 and A = 30°

To find: The value of B.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Putting\; value \; of \; A\: :}}⠀⠀

⠀⠀

:\implies\sf Sin\; A + Cos \; B = 1 \\\\\\:\implies\sf Sin~30^{\circ} + Cos~ B = 1  \\\\\\:\implies\sf \dfrac{1}{2} + Cos~B = 1 \qquad\quad\bigg\lgroup\bf Sin\; 30^{\circ} = \dfrac{1}{2} \bigg\rgroup \\\\\\:\implies\sf  Cos~ B = 1 - \dfrac{1}{2} \\\\\\:\implies\sf Cos~ B = \dfrac{2 - 1}{2} \\\\\\:\implies\sf Cos~ B = \dfrac{1}{2} \\\\\\:\implies\sf  Cos~ B = Cos~ 60^{\circ} \\\\\\:\implies{\underline{\boxed{\frak{\pink{B = 60^{\circ}}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \;the\; required\; value \; of \; B \;is\; \bf{60^{\circ} }.}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta &0 &$\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}

Similar questions