Sin A + cosA=√3, then prove tan A + cot A=1
Answers
Answered by
0
Answer:
Given - sin θ + cos θ = √3
To Prove - tan θ + cot θ =1
Property - sin2 θ + cos2 θ = 1
Answer Given equation –
sin θ + cos θ = √3
squaring on both sides,
∴ (sin θ + cos θ)2 = 3
∴ sin2 θ + cos2 θ + 2sin θ. cos θ = 3
∴ 1 + 2sin θ. cos θ = 3 ………( sin2 θ + cos2 θ = 1)
∴ 2sin θ. cos θ = 2
∴ sin θ. cos θ = 1 ………(1)
Now,
L.H.S. = tan θ + cot θ
………from (1)
= 1
= R.H.S.
∴ L.H.S. = R.H.S.
Hence Proved !!!
Answered by
1
Answer:
hope this help you mate..
Attachments:
Similar questions