Math, asked by ujjwalsonkar, 1 year ago

sin A-cosA whole sqare = 1-sin2A
prove it​

Answers

Answered by Anonymous
4

Given,

( {\sin(A)  -  \cos(A \: )  \: })^{2}  = 1 -  \sin(2A \: )

Here,

L.H.S =

( {\sin(A)  -  \cos(A \: )  \: })^{2}

R.H.S =

 1 -  \sin(2A \: )

Now,

Solve the L.H.S :

( {\sin(A)  -  \cos(A \: )  \: })^{2}

( {a  -  b})^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

 ({ \sin(A \: ) })^{2}  +  ({ \cos(A \: ) })^{2}  - 2 \sin(A \: )  \cos(A \: )

 { \sin }^{2} A \:  +  { \cos }^{2} A \:  - 2 \sin(A \: )  \cos(A \: )  \:

since \:  { \sin }^{2} A \:  +  { \cos }^{2} A  = 1

1 - 2 \:  { \sin }A \:  { \cos }A \:

 since \: 2 \:  { \sin }A \:  { \cos }A \: \:  =  \sin \: 2A  \:

1 -  \sin \: 2A  \:

Therefore L.H.S = R.H.S.

Hence proved.

Similar questions