Math, asked by hfhskskhshwjns, 1 year ago

(sin a+cosec a)^2+(cos a+sec a)^2=5+ sec^2 a.cosec^2 a

Answers

Answered by hardyboys
13
(sin^2A+cosec^2A+2.sinA.cosecA)+(cos^2A+... 
=(sin^2A+cos^2A)+(2.sinA.cosecA)+(2.co... 
=1+2+2+(cosec^2A+sec^2A) 
=5+((sin^2A+cos^2A)/(cos^2A.sin^2A)) 
=5+(sec^2A.cosec^2A) 
=5+(1+tan^2A)(1+cot^2A) 
=5+1+cot^2A+tan^2A+tan^2A.cot^2A 
=5+1+1+cot^2A+tan^2A 
=7+tan^2A+cot^2A 
please mark as brainliest answer
Answered by SillySam
32

(sin \: a + cosec \: a) {}^{2}  + (cos \: a + sec \: a) {}^{2}


Opening the brackets, using identity (a+b) ^2 = a^2 +b^2 +2ab


 \implies {sin}^{2} a \:  +  {cosec}^{2} a + 2 \: sin \: a \: \times  cosec \: a \\  + {cos}^{2} a \:  + sec {}^{2} a \:  + 2  \: cos \: a \times \sec \: a  \:




 \implies \:  \sin {}^{2}a  +  \cos {}^{2} a + cosec {}^{2} a + \\   \sec {}^{2} a + 2 \times \cancel{  \sin \: a }\times  \frac{1}{ \cancel{ \sin \: a}}  + \\ 2 \times  \cancel{ \cos \: a }\times  \frac{1}{ \cancel{ \cos \: a} }


As sin^2 a+cos^2 a=1

 \implies \: 1 +  \cosec {}^{2}a +  \sec {}^{2} a + 2 + 2


 \implies \: 5 + 1 +  { \tan }^{2} a + 1 +  { \cot}^{2} a


As cosec^2 A = 1+tan^2 A

and sec^2 A = 1+ cot^2 A

  \implies \: 7 +  { \tan}^{2} a + { \cot} ^{2} a
Similar questions