( sin A + cosec A)^2 +( cos A + sec A)^2 =7 +tan^2 A + cot^ 2
Answers
Answered by
4
solving LHS,
= (sinA + cosecA)^2 + (cosA + secA)^2
= (sin^2A + cosec^2A +2sinAcosecA) + (cos^2A + sec^2A + 2cosAsecA)
= sin^2A + cosec^2A + 2 + cos^2A + sec^2A + 2
=4 + 1 + cosec^2A + sec^2A
now, I we know cosec^2A = cot^2A +1
and sec^2A = tan^2A + 1
therefore,
= 5 + cot^2A + 1 + tan^2A + 1
= 7 + cot^2A + tan^2A
LHS = RHS
hence proved.
= (sinA + cosecA)^2 + (cosA + secA)^2
= (sin^2A + cosec^2A +2sinAcosecA) + (cos^2A + sec^2A + 2cosAsecA)
= sin^2A + cosec^2A + 2 + cos^2A + sec^2A + 2
=4 + 1 + cosec^2A + sec^2A
now, I we know cosec^2A = cot^2A +1
and sec^2A = tan^2A + 1
therefore,
= 5 + cot^2A + 1 + tan^2A + 1
= 7 + cot^2A + tan^2A
LHS = RHS
hence proved.
Similar questions
Chemistry,
8 months ago
Physics,
8 months ago
English,
8 months ago
Physics,
1 year ago
Computer Science,
1 year ago
Computer Science,
1 year ago