Math, asked by rohankedia6961, 1 year ago

(sin a + cosec a)2 + (cos a + sec a)2 =7+tan2 a + cot 2 a

Answers

Answered by Anonymous
31

Correct question :

( SinA + CosecA )² + ( CosA + SecA )² = 7 + tan²A + Cot²A

Solution :

Taking LHS,

  • ( a + b )² = a² + b² + 2ab

=> Sin²A + Cosec²A + 2SinACosecA + Cos²A + Sec²A + 2SecACosA

  • 1/SinA = CosecA
  • 1/CosA = SecA

=> Sin²A + Cos²A + 2\cancel{SinACosecA} + Cosec²A + Sec²A + 2\cancel{SecACosA}

  • Sin²A + Cos²A = 1
  • Cosec²A = 1 + Cot²A
  • Sec²A = 1 + Tan²A

=> 1 + 2 + 1 + Cot²A + 1 + Tan²A + 2

=> 1 + 2 + 1 + 1 + 2 + Cot²A + Tan²A

=> 7 + Tan²A + Cot²A

=> RHS

Hence proved!

Answered by Anonymous
19

\huge{\text{\underline{Correct question:-}}}

( SinA + CosecA )² + ( CosA + SecA )² = 7 + tan²A + Cot²A

\huge{\text{\underline{Solution:-}}}

Taking LHS,

\implies\large{\tt{\boxed{( a + b )^2 = a^2 + b^2 + 2ab}}}

\implies Sin²A + Cosec²A + 2SinACosecA + Cos²A + Sec²A + 2SecACosA

\implies1 / SinA = CosecA

\implies1 / CosA = SecA

\implies Sin²A + Cos²A + 2\cancel{SinACosecA} + Cosec²A + Sec²A +2\cancel{SecACosA}

\impliesSin²A + Cos²A = 1

\impliesCosec²A = 1 + Cot²A

\impliesSec²A = 1 + Tan²A

\implies 1 + 2 + 1 + Cot²A + 1 + Tan²A + 2

\implies 1 + 2 + 1 + 1 + 2 + Cot²A + Tan²A

\implies 7 + Tan²A + Cot²A

\implies RHS

Hence proved!

___________________________________________________

Similar questions