(sin a + cosec a)2 + (cos a + sec a)2 =7+tan2 a + cot 2 a
Answers
Answered by
31
Correct question :
( SinA + CosecA )² + ( CosA + SecA )² = 7 + tan²A + Cot²A
Solution :
Taking LHS,
- ( a + b )² = a² + b² + 2ab
=> Sin²A + Cosec²A + 2SinACosecA + Cos²A + Sec²A + 2SecACosA
- 1/SinA = CosecA
- 1/CosA = SecA
=> Sin²A + Cos²A + 2 + Cosec²A + Sec²A + 2
- Sin²A + Cos²A = 1
- Cosec²A = 1 + Cot²A
- Sec²A = 1 + Tan²A
=> 1 + 2 + 1 + Cot²A + 1 + Tan²A + 2
=> 1 + 2 + 1 + 1 + 2 + Cot²A + Tan²A
=> 7 + Tan²A + Cot²A
=> RHS
Hence proved!
Answered by
19
( SinA + CosecA )² + ( CosA + SecA )² = 7 + tan²A + Cot²A
★ Taking LHS,
Sin²A + Cosec²A + 2SinACosecA + Cos²A + Sec²A + 2SecACosA
1 / SinA = CosecA
1 / CosA = SecA
Sin²A + Cos²A + + Cosec²A + Sec²A +
Sin²A + Cos²A = 1
Cosec²A = 1 + Cot²A
Sec²A = 1 + Tan²A
1 + 2 + 1 + Cot²A + 1 + Tan²A + 2
1 + 2 + 1 + 1 + 2 + Cot²A + Tan²A
7 + Tan²A + Cot²A
RHS
Hence proved!
___________________________________________________
Similar questions