Math, asked by sanjidakhatoon1979ea, 2 months ago

sin A + cosec a square + Cos A + sec a square is equal to 7 + tan square A + cot square A

Answers

Answered by mathdude500
2

Appropriate Question :-

Prove that

\rm \: {(sinA + cosec)}^{2}  +  {(cosA + secA)}^{2} = 7 +  {tan}^{2}A +  {cot}^{2}A

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: {(sinA + cosec)}^{2}  +  {(cosA + secA)}^{2}

Using this identity,

\underbrace{ \boxed{ \bf \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

we get

\rm \:= {sin}^{2}A +  {cosec}^{2}A + 2sinAcosecA +  {cos}^{2}A +  {sec}^{2}A + 2cosAsecA

We know,

\underbrace{ \boxed{ \bf \: cosecA =  \frac{1}{sinA}}} \:  \:  \: and \:  \:  \: \underbrace{ \boxed{ \bf \: secA =  \frac{1}{cosA}}}

Using these, we get

\rm \:=( {sin}^{2}A +  {cos}^{2}A) + 2sinA \times  \dfrac{1}{cosecA} +{cosec}^{2}A +  {sec}^{2}A + 2cosA \times  \dfrac{1}{cosA}

We know,

\underbrace{ \boxed{ \bf \:  {sin}^{2}A +  {cos}^{2}A = 1}} \:  \: \underbrace{ \boxed{ \bf \:  {sec}^{2}A = 1 +  {tan}^{2}A}}

and

\underbrace{ \boxed{ \bf \:  {cosec}^{2} A = 1 +  {cot}^{2}A}}

So, on using these Identities, we get

\rm \:  =  \: 1 + 2 + (1 +  {cot}^{2}A) + (1 +  {tan}^{2}A) + 2

\rm \:  =  \: 7 +  {tan}^{2}A +  {cot}^{2}A

= RHS

Hence, Proved

Thus,

 \boxed{\rm \: {(sinA + cosec)}^{2}  +  {(cosA + secA)}^{2} = 7 +  {tan}^{2}A +  {cot}^{2}A}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions