Math, asked by ccm97, 1 year ago

sin A/cot A +cosec A = 2+ sin A/cot A-cosec A

Answers

Answered by sonali7249
78
tu
r.h.s
=sinA/cotA+cosecA*cotA- cosecA/cotA-cosecA
=sinA(cotA-cosecA)/cot²A-cosec²A
=sinA* cotA- sinA.cosecA
=sinA.cosA/sinA-1
=cosA-1

l.h.s
=2+ sinA(cotA+ cosecA)/cot²A-cosec²A
=2+ sinA.cotA+ sinA.cosecA
=2+sinA.cosA/sinA+1
=2+cosA-1
=cosA-1
r.h.s=l.h.s
Answered by aquialaska
115

Answer:

To prove:

2\,+\,\frac{sinA}{cotA\,-\,cosecA}\:=\:\frac{sinA}{cotA\,+\,cosecA}

proof,

LHS

=2\,+\,\frac{sinA}{cotA\,-\,cosecA}

=2\,+\,\frac{sinA}{cotA\,-\,cosecA}\times\frac{cotA\,+\,cosecA}{cotA\,+\,cosecA}

=2\,+\,\frac{sinA(cotA\,+\,cosecA)}{cot^2A\,-\,cosec^2A}

=2\,-sinA\times cotA\,+sinA\times\,cosecA

=2\,-sinA\times\frac{cosA}{sinA}\,+sinA\times\,\frac{1}{sinA}

=2\,-cosA-1\\

=1-cosA

RHS

=\:\frac{sinA}{cotA\,+\,cosecA}

=\:\frac{sinA}{cotA\,+\,cosecA}\times\frac{cotA\,-\,cosecA}{cotA\,-\,cosecA}

=\frac{sinA(cotA\,-\,cosecA)}{cot^2A\,-\,cosec^2A}

=-sinA\times cotA\,+sinA\times cosecA

=-sinA\times\frac{cosA}{sinA}\,+sinA\times\frac{1}{sinA}

=1-cosA

⇒ LHS = RHS

Hence proved

Similar questions