Sin A + Cot A / Sin A - Cos A + Sin A - Cos A / Sin A + Cot A =. 2 / Sin ^2 A - Cos ^2 A. = 2 / 2 Sin ^2 A - 1
Answers
Correct Question
→ (sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(sin²A - cos²A) = 2/(2sin²A - 1)
We Know That,
- sin²A + cos²A = 1
- cos²A = 1 - sin²A
- (a + b)(a - b) = a² - b²
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- (a + b)² + (a - b)² = 2(a² + b²)
Proof
(Given in attachment)
Procedure
1. Take L.C.M of L.H.S and then use above identities.
2. Break down cos²A into sin²A by using distinct identity.
3. You will get final values as required.
Hence Proved
★Answer:
★Proved!★
★Step-by-step explanation:
★Correction in your question:
(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(sin²A - cos²A) = 2/(2sin²A - 1)
★Solution:
Consider L.H.S: (Left hand side)
=R.H.S (Right hand side)
★Some Important Identies:★
★sin²A + cos²A = 1
★cos²A = 1 - sin²A
★(a + b)(a - b) = a² - b²
★(a + b)² = a² + b² + 2ab
★(a - b)² = a² + b² - 2ab
★(a + b)² + (a - b)² = 2(a² + b²)
★We also use these identies to find L.H.S , R.H.S of expressions.★
★Note:★
★Don't forget to use BRACKETS!!★
★Try to post full&correct question.★
★Hope my answer helps you.★