sin A=,m sinB and tanA =n tanB then cos^2A = ?
Answers
AnswEr :
⇝ sinA = m sinB
⇝
⇝
⠀
⇝ tanA = n tanB
⇝
⇝
_________________________________
• we know this trigonometric relation :
Given :----
- SinA = m sinB
- tanA = n tanB
To Find :----
- Cos²A
Formula used :----
- 1/sin@ = cosec@
- 1/tan@ = cot@
- cosec²@ - cot²@ = 1
- TanA = SinA/CosA
- Sin²A = 1 - Cos²A
Solution :-------
SinA = m sinB
→ 1/sinB = m/sinA
→ cosecB = m/sinA ----------------------Equation(1)
similarly,
tanA = n tanB
→ 1/tanB = n/tanA
→ cotB = n/tanA ----------------------Equation(2)
Now we know that,
cosec²B - cot²B = 1 -------------------Equation(3)
putting value of Equation (1) and Equation (2) in Equation (3) we get,
(m/SinA)² - (n/TanA)² = 1
putting value of tanA = sinA/cosA now,
➠ (m²/Sin²A) - (n²Cos²A/Sin²A) = 1
Taking LCM now,
➠ (m² - n²Cos²A) = Sin²A
putting value of sin²A in RHS now,
➠ (m² - n²Cos²A) = 1 - Cos²A
Taking LHS, RHS same side now,
➠ n²Cos²A - Cos²A = (m² - 1)
Taking cos²A common Now, from LHS
➠ Cos²A(n² - 1) = (m² - 1)